Search results for "partially hyperbolic"

showing 6 items of 6 documents

Dynamic instability in absence of dominated splittings.

2006

We want to understand the dynamics in absence of dominated splittings. A dominated splitting is a weak form of hyperbolicity where the tangent bundle splits into invariant subbundles, each of them is more contracted or less expanded by the dynamics than the next one. We first answer an old question from Hirsch, Pugh and Shub, and show the existence of adapted metrics for dominated splittings.Mañé found on surfaces a $C^1$-generic dichotomy between hyperbolicity and Newhouse phenomenons (infinitely many sinks/sources). For that purpose, he showed that without a strong enough dominated splitting along one periodic orbit, a $C^1$-perturbation creates a sink or a source. We generalise that last…

[ MATH ] Mathematics [math]partially hyperbolichomoclinic classdécomposition dominéeadapted metricmétrique adaptée[MATH] Mathematics [math]homoclinic tangencychain-recurrent.dominated splittinghyperbolic dynamicsclasse homoclinebifurcationphénomène de Newhousepartiellement hyperboliqueNewhouse phenomenonrécurrent par chaines.[MATH]Mathematics [math]récurrent par chainestangence homoclinedynamique hyperbolique
researchProduct

Adapted Metrics for Dominated splittings.

2007

International audience; A Riemannian metric is adapted to an hyperbolic set of a diffeomorphism if, for this metric, the expansion/contraction of the unstable/stable directions can be seen after only one iteration. A dominated splitting is a notion of weak hyperbolicity where the tangent bundle of the manifold splits in invariant subbundles such that the vector expansion on one bundle is uniformly smaller than on the next bundle. The existence of an adapted metric for a dominated splitting has been asked by Hirsch Pugh and Shub who answer positively to the question in the special case of a dominated splitting in two bundles, one being of dimension 1. This paper gives a complete answer to th…

Mathematics::Dynamical Systems37D30Dominated splittingBanach bundlepartially hyperbolic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]adapted metriclinear cocycleMathematics::Symplectic Geometry
researchProduct

Seifert manifolds admitting partially hyperbolic diffeomorphisms

2017

We characterize which 3-dimensional Seifert manifolds admit transitive partially hyperbolic diffeomorphisms. In particular, a circle bundle over a higher-genus surface admits a transitive partially hyperbolic diffeomorphism if and only if it admits an Anosov flow.

Surface (mathematics)Pure mathematicsMathematics::Dynamical SystemsCircle bundle[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences[MATH.MATH-GN]Mathematics [math]/General Topology [math.GN]0103 physical sciencesFOS: MathematicsMSC: Primary: 37D30 37C15; Secondary: 57R30 55R05.Mathematics - Dynamical Systems0101 mathematicsMathematics::Symplectic GeometrySeifert spacesMathematics - General TopologyMathematicsTransitive relationAlgebra and Number TheoryApplied Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::Geometric TopologyFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphismAnalysis
researchProduct

Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples

2016

We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.

Pure mathematicsFundamental groupMathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]MSc: 37D30[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciencesIdentity (music)Exponential growth0103 physical sciencesFOS: MathematicsMathematics - Dynamical Systems0101 mathematicsMathematicsConjecture010102 general mathematicsClassificationMathematics::Geometric TopologyDehn twistFlow (mathematics)Partially hyperbolic diffeomorphisms010307 mathematical physicsDiffeomorphism
researchProduct

INSTABILITY OF HAMILTONIAN SYSTEMS IN THE SENSE OF CHIRIKOV AND BIFURCATION IN A NON LINEAR EVOLUTION PROBLEM EMANATING FROM PHYSICS

2004

We prove the existence of a minimal geometrico-dynamical condition to create hyperbolicity in section in the vicinity of a transversal homoclinic partially hyperbolic torus in a near integrable Hamiltonian system with three degrees of freedom. We deduce in this context a generalization of the Easton's theorem of symbolic dynamics. Then we give the optimal estimation of the Arnold diffusion time along a transition chain in the initially hyperbolic Hamiltonian systems with three degrees of freedom with a surrounding chain of hyperbolic periodic orbits .In a second part, we describe geometrically a mechanism of diffusion studied by Chirikov in a near integrable Hamiltonian system with three de…

[ MATH ] Mathematics [math]dynamique symboliquehyperbolicitymodulational instabilityNavier Stokespartially hyperbolic tori[MATH] Mathematics [math]amplitude equationschevauchement de résonancescenter manifoldconvection mixte –hyperbolicitéoverlapping resonancessymbolic dynamicséquations d'amplitudesystèmes Hamiltoniensbifurcationinstabilité modulationnellevariété centraleHamiltonian systems[MATH]Mathematics [math]tores partiellement hyperboliquesmixed convection
researchProduct

Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence

2020

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…

Pure mathematics37D30Similarity (geometry)Mathematics::Dynamical SystemsGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)dynamical coherenceMSC Primary: 37C15 37D3037C1501 natural sciencessymbols.namesake0103 physical sciencesFOS: MathematicsErgodic theoryMathematics - Dynamical Systems[MATH]Mathematics [math]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsConjecture010102 general mathematicsSurface (topology)Mathematics::Geometric Topologystable ergodicityMapping class groupFlow (mathematics)Poincaré conjecturesymbols010307 mathematical physicsGeometry and Topologypartially hyperbolic diffeomorphisms
researchProduct